向量组及线性方程组的解

iByte
iByte
iByte
订阅者
2816
文章
0
评论
生活百科评论146字数 428阅读1分25秒阅读模式

矩阵向量的运算

一个有序序列(a1, a2,…, an)的实数称为有序n元组。有两种常用的方法来表示R中的n元组,用行:文章源自玩技e族-https://www.playezu.com/165623.html

向量组及线性方程组的解插图文章源自玩技e族-https://www.playezu.com/165623.html

或者用列:文章源自玩技e族-https://www.playezu.com/165623.html

向量组及线性方程组的解插图1文章源自玩技e族-https://www.playezu.com/165623.html

这两种情况都被称为向量组。文章源自玩技e族-https://www.playezu.com/165623.html

我们设矩阵A,使得:文章源自玩技e族-https://www.playezu.com/165623.html

向量组及线性方程组的解插图2文章源自玩技e族-https://www.playezu.com/165623.html

是个m×n 阶矩阵, 是以列的形式列出 a1, a2, . . . , an. (每个ai是一个m个有序数)文章源自玩技e族-https://www.playezu.com/165623.html

如果x是n维向量:文章源自玩技e族-https://www.playezu.com/165623.html

向量组及线性方程组的解插图3文章源自玩技e族-https://www.playezu.com/165623.html

那么A和向量组x的乘积为:

向量组及线性方程组的解插图4

若线性方程组的常数项为b (是向量组), 则方程组可写成为:

向量组及线性方程组的解插图5

引理:如x, y都是n维向量,则A(x+y) = Ax+Ay.

定理:假设x1是线性方程组Ax =b的任意特解,且对应的齐次方程组Ax =0的解,那么对于Ax =b每个的解是这样的:

向量组及线性方程组的解插图6

证明:假设也是Ax = b的一个解,则Ax = b,写入 = −。

然后x2 = x0 +x1利用上面的引理,我们计算Ax0 = A(x2−x1) = Ax2−Ax1 = b−b = 0

因此x0是相关齐次方程组AX = 0的解。

为了更好的理解线性方程组AX=B的解是一个特解加上齐次方程的一般解,我们做一道例题。

向量组及线性方程组的解插图7

例题:求方程组的解,

向量组及线性方程组的解插图8

解:利用高斯行消元法将增广矩阵化简,有:

向量组及线性方程组的解插图9

所以用参数s,t表示解:

x1 = 4+2s−t,

x2 = 2+s+2t,

x3 = s,

x4 = t

因此线性方程组的形式可以写成:

向量组及线性方程组的解插图10

上面的的特解是当s=0, t=0的时候有:

向量组及线性方程组的解插图11

而齐次方程AX=O的解是:(解法参见齐次方程组的基解)

向量组及线性方程组的解插图12

通过例题再次验证了非齐次方程

的通解= 对应的齐次方程的通解+非齐次方程的一个特解。

 
匿名

发表评论

匿名网友
确定

拖动滑块以完成验证