arcsinx的导数是:y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²),此为隐函数求导。
y=arcsinx y'=1/√(1-x²)文章源自玩技e族-https://www.playezu.com/146485.html
反函数的导数:文章源自玩技e族-https://www.playezu.com/146485.html
y=arcsinx,文章源自玩技e族-https://www.playezu.com/146485.html
那么,siny=x,文章源自玩技e族-https://www.playezu.com/146485.html
求导得到,cosy*y'=1文章源自玩技e族-https://www.playezu.com/146485.html
即y'=1/cosy=1/√[1-(siny)²]=1/√(1-x²)文章源自玩技e族-https://www.playezu.com/146485.html
文章源自玩技e族-https://www.playezu.com/146485.html
四种方法如下:文章源自玩技e族-https://www.playezu.com/146485.html
1、先把隐函数转化成显函数,再利用显函数求导的方法求导;文章源自玩技e族-https://www.playezu.com/146485.html
2、隐函数左右两边对x求导(但要注意把y看作x的函数);文章源自玩技e族-https://www.playezu.com/146485.html
3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。计算复合函数的导数时,关键是分析清楚复合函数的构造,即弄清楚该函数是由哪些基本初等函数经过这样的过程复合而成的。
求导数时,按复合次序由最外层起,向内一层一层地对中间变量求导数,直到对自变量求导数为止。
评论